Production Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Authors
Abstract:
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this study, in order to minimize deviations from the values stated in the tea industry, two Particle Swarm optimization algorithm and genetic algorithm were used to solve the model. The data were obtained through interviews with Securities and Exchange Organization and those in financial units, industrial, commercial, and production. The results indicated the superiority of birds swarm optimization algorithm in the tea industry.
similar resources
Comparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
full textSELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)
This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...
full textFrequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization
This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...
full textAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
full textISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
full text7 Hybrid Genetic : Particle Swarm Optimization Algorithm
This chapter proposes a hybrid approach by combining a Euclidian distance (EU) based genetic algorithm (GA) and particle swarm optimization (PSO) method. The performance of the hybrid algorithm is illustrated using four test functions. Proportional integral derivative (PID) controllers have been widely used in industrial systems such as chemical process, biomedical process, and in the main stea...
full textMy Resources
Journal title
volume 7 issue 3
pages 395- 410
publication date 2017-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023